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Abstract. 

The determination of the remote stress causing crack propagation in an infinite 3D domain with an 

embedded flat elliptical crack is here revisited in the framework of the Coupled Criterion of Finite Fracture 

Mechanics. We start reviewing Linear Elastic Fracture Mechanics approaches, which differ by accounting for 

different infinitesimal crack growths. Then, we provide the solution based on Finite Fracture Mechanics: if 

the elliptical flaw is sufficiently small, the crack grows along iso-stress lines. For larger sizes, other crack 

growths may take place. Thus, the present investigation shows that assuming an iso-stress crack front may 

provide effectively the exact Finite Fracture Mechanics solution, particularly for small defects; on the other 

hand, it can be wrong for larger size, providing moreover un-conservative predictions. However, for the 

geometry at hand, it yields failure stress estimates differing from the actual one by a few percents. Thus, the 

iso-stress assumption, conjectured by Leguillon [Leguillon D. (2014) An attempt to extend the 2D coupled 

criterion for crack nucleation in brittle materials to the 3D case. Theoretical and Applied Fracture Mechanics, 

74:7-17.] - implying strong simplifications in the numerical implementation of the coupled criterion in 3D 

problems - seems to be largely justified by the present results. Moreover, regardless of the initial crack size, 

the finite growth predicted by the model results in a new elliptical crack shape closer to the circular one, 

meaning the eccentricity consistently decreases as the crack propagates. 

Keywords: Coupled Criterion; Finite Fracture Mechanics; 3D Linear Elastic Fracture Mechanics; elliptical 

cracks; quasi-brittle materials. 

 

1. Introduction 

The Coupled Criterion of Finite Fracture Mechanics (CCFFM), introduced for the first time by Leguillon [1] in 

2002, has proven to be an effective, yet simple, fracture criterion for obtaining the failure load in a variety of 

structural problems, spanning from size effect (e.g. [2]) to stress concentration/intensification (e.g. [3-5]) in 

homogeneous materials, from composite materials (e.g. [6-8]) to bonded joints (e.g. [9]), from static loadings 

to dynamic (e.g. [10, 11]) and fatigue (e.g. [12, 13]) loadings. With respect to Linear Elastic Fracture 

Mechanics (LEFM), a major advantage is its applicability to any geometry, cracked or plain (i.e. not only 

cracked). With respect to more sophisticated models like the Cohesive Crack Model (CCM) or the Phase Field 

(PF) model for fracture, the numerical implementation of the CCFFM is usually much easier, often allowing 

for an analytical or semi-analytical solution for the problem at hand. Moreover, the CCFFM has proven to be 
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often in excellent agreement with CCM and PF models: for a comparison between CCFFM and CCM the reader 

is referred to [14-19]; and for a comparison between CCFFM and PF to [20-24]. 

Most of the CCFFM applications address two-dimensional problems, where cracks/V-notch tips are straight 

lines through-the-thickness. However, recently, attention has been focussed also to 3D problems, starting 

from Leguillon’s pioneering work [25]. The application of the CCFFM to 3D problems is challenging because 

the finite crack advance, differently from the 2D case, can be of any shape [26]. To overcome this difficulty, 

researchers often assumed a finite crack growth occurring along an iso-stress line, see e.g. [27-29]. One of 

our main purposes is investigating this assumption for a model problem allowing an analytical derivation in 

the framework of the CCFFM: a flat elliptical flaw in an infinite linear elastic medium subjected to a remote 

tensile stress orthogonal to the crack plane. 

The linear elastic stress-strain solution for an elliptical flaw under remote tensile stress dates back to Green 

& Sneddon [30], following (and including) the one for a penny-shaped crack provided by Sneddon [31]. Later, 

Irwin [32] provided the Stress Intensity Factor (SIF) values along the elliptical crack front. More recent 

contributions related to the stress field in the vicinity of the crack front can be found in [33, 34]. For what 

concerns crack propagation, Lazarus [35], among different flaw shapes, considered the elliptical one and 

analysed the crack growth for brittle fracture (assuming propagation where the SIF reaches the fracture 

toughness and regularizing the crack front) and fatigue (using Paris’ equation). More numerical/practical 

contributions along with experimental data validation (under cycling loading) about crack propagation from 

flat elliptical cracks can be found, e.g., in [36-38]. Finally, we refer to a recent numerical investigation where 

the CCFFM criterion has been exploited to deal with free edge delamination in angle-ply laminates, assuming 

a semi-elliptical crack shape, under static [39], fatigue [40] and thermal [41] loadings. These papers provide 

details on the numerical implementation of the Coupled Criterion for geometries similar to the one addressed 

herein. 

The paper is organized as follows. In Section 2 we focus on LEFM, deriving the general expression for the 

mode I failure stress in presence of a flaw of any shape under the assumption of an infinitesimal iso-stress 

crack growth. Then, we specify the failure stress for the flat elliptical crack, providing its closed form estimate 

by means of SIFs. Thereafter, we show the same result can be achieved by evaluating the Strain Energy 

Release Rate (SERR). Following this latter procedure, we consider also the infinitesimal elliptical crack growth 

along the minor axis alone, showing it provides failure stress estimates lower than the iso-stress one. 

In Section 3 we derive the failure stress provided by the CCFFM for the flat elliptical crack. We assume the 

finite crack propagation to be characterized by an elliptical crack front of any shape/size. Thus, the new crack 

front is characterized by two parameters (the increments of the semi-axes); CCFFM implies solving a 

minimization problem upon variation of these two parameters. It will be shown that, based on the crack 

shape and size, two different scenarios (i.e. iso-stress and minor-axis crack propagations) can occur and the 

corresponding fracture stress is finally provided. The results are commented and in Section 4 some 

conclusions are drawn. 

 

2. LEFM approach 

We first provide the failure stress according to LEFM for a flat crack with an arbitrary shape subject to a mode 

I loading, then specify it for the elliptical crack. Two procedures, based on SIF or SERR, are outlined and 

exploited. 
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2.1 Planar crack of arbitrary shape: iso-stress crack growth 

Let us consider a planar crack of arbitrary shape in an infinite body, made by a homogeneous isotropic linear 

elastic brittle material. Let the plane of the crack be (x,y). The remote loading is a uniform tensile stress  in 

the z direction as in Fig.1. Under this assumption the crack is in pure mode I condition (or - the same - in 

opening mode, since, because of isotropy, the displacement field is symmetrical to the crack plane). 

Except for the penny-shaped crack, the SIF varies along the contour C of the crack, i.e. KI = KI(s), s being the 

curvilinear abscissa along the contour C (Fig.1b). Denoting by KI,min and the by KI,max the minimum and 

maximum value of the SIF respectively, we can write: 

I,min I I,max( ) K K s K  (1) 

Assume KI = KI(s) is available in an analytic or numerical form, and the fracture toughness KIc of the material 

is known. One is interested in f, the remote stress causing crack growth, i.e. failure, according to LEFM. 

Because of mode I, the crack expands in its plane (x,y). However, if one wishes to consider the Griffith’s SERR, 

there are an infinite possible shapes of infinitesimal crack growth, unlike in 2D domains where only a collinear 

crack growth is possible along an infinitesimal length da (a being the crack length). 

 

Fig.1. A planar crack of arbitrary shape in an infinite 3D domain under uniform tensile stress normal to the 

crack plane (a). Crack geometry (b). 

A reasonable starting point is assuming (yet, an assumption) an infinitesimal crack growth defined by an iso-

stress line. Since the asymptotic stress field in the direction normal to the crack contour (r is the coordinate 

along the normal n̂  starting from the crack contour C, see Fig.1b) is: 

I

2
z

K

r
 


 (2) 

The same stress level (e.g. 0) is achieved at different distances from the contour C, larger where KI is larger, 

smaller where KI is smaller (see Fig.2a). Where KI is maximum, the stress 0 is achieved at a distance (a)max: 
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( )
2

I,max

2max
02

 
 

K
a  (3) 

while in a generic point we have: 

( )
2

I

2

02

K
a 

 
 (4) 

 

Fig.2. Asymptotic stress field ahead the crack front (a) and iso-stress crack growth (b). 

 

Dividing Eq.(3) by (4), one obtains: 

( )

2

I

I,max maxmax

 
 =    

Ka

a K

G

G
 (5) 

where the last expression is a consequence of Irwin’s relationship 2 = IK EG , G being the SERR and E’ the 

Young modulus of the material under plane strain conditions. As a tends to zero, Eq.(5) defines the shape 

of the infinitesimal iso-stress crack growth (see Fig.2b). 

Expressing the Griffith infinitesimal energy balance according to LEFM (Gc being the material fracture energy) 

by an integral along the curve C, one obtains: 

( ) cd d
C C

s a s a s =  G G  (6) 

Dividing both sides of Eq.(6) by (a)max and substituting Eq.(5) into Eq.(6), one obtains the condition for crack 

growth: 

(a) (b) 

r 

for K
I,max

 

z 

for generic K
I
 

(a)
max

 

a 


0
 

x 

y 

a(s) 

(a)
max

 

r 



5 
 

( )

( )

2

iso c

d

d

C

C

s s

s s
= =




G

G G
G

 (7) 

The ratio between the integrals is somehow an equivalent-2D SERR, since crack growth occurs whenever this 

value reaches the material fracture energy Gc, like in 2D problems. We named it Giso since it is the equivalent-

2D SERR under the assumption of iso-stress crack growth. Note that, from a mathematical point of view, Giso 

is the contra-harmonic mean (sum of the squared values divided by sum of values, see appendix A) of the 

SERR values evaluated along the crack contour. Among different averages (i.e. harmonic, geometric, 

arithmetic, quadratic, etc.) the contra-harmonic mean is the highest one, thus affected by large values and 

close to the maximum value of the variable. By Irwin’s relationship we can get also the equivalent-2D SIF KI,iso, 

which provides the failure stress when it equals the material fracture toughness KIc: 

( )

( )

4

I

I,iso Ic2

I

d

d
= =




C

C

K s s

K K
K s s

 (8) 

 

 

Fig.3. An elliptical (planar) crack in an infinite medium under uniform tensile stress normal to the crack plane 

(a). Crack geometry (b). 

 

2.2 Elliptical crack: iso-stress crack growth by SIF values 

As a particular case, we consider the elliptical flat crack shown in Fig.3a. The failure stress according to LEFM 

assuming an iso-stress crack growth is here obtained by the results in Section 2.1 (Eq.(8)). The ellipse in Fig.3b 

is defined by semi-axes a and b (a  b) defined as: 
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2 2

2 2
1

x y

a b
+ =  (9) 

or in parametric form (0   < 2): 

cos
( )

sin

x a

y b

= 
 = 

= 
P  (10) 

The aspect of the ellipse is univocally defined either by the aspect ratio  = b/a (0 <  < 1) or by the eccentricity 

( )
2

1= −k b a  (0 < k < 1).  

The SIF along the crack front is [32]: 

2 24
I 2

1 cos
( )

b
K k

E k

 
= −   (11) 

where E(k2) is the complete elliptic integral of the second kind (see Appendix B). From Eq.(11) the maximum 

value of the SIF KI,max is at point B (i.e. on the minor axis,  = /2) while the minimum value of the SIF KI,min is 

at point A (i.e. on the major axis,  = 0): 

( )I,max I 2B ( )

 
= =

b
K K

E k
 (12) 

( )I,min I I,max2A ( )

 
= = =

b b
K K K

E k a a
 (13) 

For what concerns KI,max, Eq.(12) encompasses the limit cases of a penny-shaped crack (k = 0 or  = 1): 

I

2
K b=  


 (14) 

constant all around the crack front, and of a through-the-thickness crack of length 2b (corresponding to k = 

1 or  = 0): 

IK b=    (15) 

To obtain the failure stress, we have to compute the 2D-equivalent SIF by means of Eq.(8). Using the 

parametric expression of the ellipse (Eq.(10)), the equivalent SIF (Eq.(8)) reads: 

( )

( )

( )

( )

2 2
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4 2 2

I

0 0
I,iso 2 22

2 2 2

I

0 0

d
d 1 cos d

d
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d 1 cos d

d

 

 

  −  
  

= =

  −  


 

 

K k
b

K
E k

K k

P

P
 (16) 

where the double symmetry of the ellipse has been exploited to limit the integration interval to [0, /2]. By 

analytical manipulations, the integrals in Eq.(16) can be cast in terms of complete elliptic integrals of first 

(K(k2)) and second (E(k2)) kind (see Appendix B) as: 

2 2 2 2

I,iso 2 2

2 2(2 ) ( ) (1 ) ( )

( ) 3(2 )

 − − −
=

−

b k E k k K k
K

E k k
 (17) 
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Thus, according to LEFM and iso-stress crack growth, failure is achieved whenever the above quantity reaches 

the material fracture toughness. Hence, the corresponding failure stress (f)LEFM-iso is: 

( )
2

2Ic
f 2 2 2 2LEFM-iso

3 2
( )

2 2(2 ) ( ) (1 ) ( )

K k
E k

k E k k K kb

−
 =

− − −
 (18) 

Note that, as expected for any LEFM approach, the failure stress tends to infinity as the crack vanishes (i.e. 

f→ as b→0). 

 

2.3 Elliptical crack: iso-stress crack growth by SERR evaluation 

We show in this sub-section that same results in Section 2.2 are obtained also by proper evaluation of the 

SERR. This procedure will be exploited in the following to remove the assumption of iso-stress crack growth. 

Computation of the SERR G can be performed without the need of SIF (i.e. without exploiting Irwin’s 

relationship). It is the way followed originally by Griffith in his 1921 seminal work. Accordingly, under load 

control, one has: 

0
lim
A A →


=


G  (19) 

To compute Giso (i.e. the SERR assuming an iso-stress crack growth) by Eq.(19) one need to know (i) the iso-

stress contour lines and (ii) the change in strain energy  due to the (finite) variation A of the crack surface. 

These ingredients can be derived by Green & Sneddon [30] solution. Accordingly, because of the remote 

stress the planar elliptical crack takes the shape of an ellipsoid whose semi-axes are a, b and wmax (the 

maximum crack opening displacement), the last one given by: 

max 2

2

( )


=



b
w

E k E
 (20) 

By looking at the load as a uniform remote tensile stress field plus a uniform compressive stress applied on 

the crack faces, and by means of Clapeyron’s theorem, the strain energy  increment due to the presence 

of the crack can be computed as: 

2


 =

V
 (21) 

where V is the volume of the (deformed) crack (i.e. the ellipsoid), whose value is: 

max

4

3
V a b w=   (22) 

Hence, by combining Eqs.(20) to (22): 

2 2

2

4

3 ( )

 
 =



a b

E k E
 (23) 

The iso-stress lines can also be derived from Green & Sneddon [30]. From their solution, the z stress field 

on the crack plane (outside the crack faces) is amenable of the following analytical expression: 

2
2z

2 2 2

1
1 arcsin

( )

   + 
  = + −

  +  +   

a b a
E k

E k a a
 (24) 
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where E(k2) is the incomplete elliptic integral of the second kind (see Appendix B) and  is an ellipsoidal 

coordinate. On the crack plane (z = 0),  = constant (  0) corresponds to a family of ellipses with equation: 

2 2

2 2
1+ =

+  + 

x y

a b
 (25) 

Hence, we get a relevant information: the iso-stress curves are a particular family of ellipses. More precisely, 

Eqs.(24) and (25) show that, as  increases from 0 to , the stress value decreases from  to  and the 

corresponding isostress lines are ellipses of increasing size and decreasing eccentricity. As an example, some 

of them are plotted in Fig.4a for an elliptical crack with aspect ratio  = 0.5. Naming by a and b the 

increment of the semi-axes of the generic iso-stress line with respect to the ones of the original elliptical flaw, 

from Eq.(25) the relationship between them may be obtained (see details in Appendix C): 

 

Fig.4. Possible crack growths: (elliptical) iso-stress crack growth (a); elliptical, with increment along minor axis 

alone (b), named minor-axis crack growth; non-elliptical crack growth, not considered in the current 

investigation (c). 

 

( )
22 2a a b b b a = +  +  −  (26) 

Let us assume the crack grows by a finite amount up to a given iso-stress line, which in turns is defined by a 

given  value. From Eq.(23), the energy variation  is: 
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( )
( )

2 22 2

2 2 2 2 2

4

3 ( ) ( ) 1

 +  +   
 = − 

  − +  −   

b a a b

E E a b a E b a
 (27) 

while the newly created crack surface is (difference between elliptical areas): 

2 2  =  +  +  −
 

A a b ab  (28) 

The following step is inserting Eqs. (27) and (28) into Eq.(19). Then, the limit for A→0 (i.e. →0) has to be 

evaluated. The limit takes the undetermined form 0/0, but the application of De l’Hôpital rule along with 

property (B4) allows the computation of the limit. Finally equating the SERR Giso to the fracture energy Gc 

along with Irwin relationship yields the failure stress (f)LEFM-iso, which coincides with Eq.(18). Thus, despite 

the different lines of thought (local vs. global), we checked that the SIF- and SERR-based procedures yield the 

same outcome, Eq.(18). 

 

2.4 Elliptical crack: minor axis crack growth 

On the basis of the analysis in the previous section, we are able to evaluate the failure stress for any elliptical 

crack growth (i.e. not only the iso-stress crack growth). The criterion that mostly agrees with LEFM is the G-

max, i.e. the crack growth actually occurring is the one providing the maximum SERR and consequently the 

minimum failure stress. Since the SIF is higher at the edge of the minor axis, among all elliptical crack 

extensions, the one resulting in the largest SERR is the one at which only the minor axis is increasing. 

Let us denote by b the increment of the minor axis (see Fig.4b). The energy available for a finite elliptical 

crack growth along the minor axis by b is: 

( )

( ) ( )

22 2

2 2 22

4

3 11

 
+   

 = − 
   −− +    

a b b a b

E E b aE b b a
 (29) 

The energy needed to create the new surface is: 

( )c =   +  −  a b b abG  (30) 

The corresponding failure stress (f)LEFM-minor is obtained by equating Eqs. (29) - (30) and taking the limit for 

b→0, or, by introducing the ratio b between the final value of the minor axis and its initial value, letting 

b→1: 

+ 
 =b

b b

b
 (31) 

( )
2

2Ic Ic
f 2LEFM-minor 2 2 2 21

22 2

13 3
lim ( )

4 21 (1 ) ( ) (1 ) ( )

( )1 (1 )

b

b

b

b

K K k
E k

b b k E k k K k

E kE k

 →

 −
 = =

 + − −−
 −  − 

 (32) 

where again De l’Hôpital rule along with property (B4) has been used. 

A further, third, estimate of the failure stress is obtained by setting KI,max = KIc. This condition is sometime 

referred to as Irwin criterion (as opposed to the previous ones, based on Eq.(19), referred to as Griffith 

criterion, see e.g. [42]). Note that, differently from 2D problems where the two criteria coincide, the equality 

KI,max = KIc does not rely on any energy balance; however, it is interesting because it provides conservative 
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predictions with respect to the previous estimates Eqs.(18) and (32). Let us denote (f)Irwin the new failure 

stress estimate. By Eq.(12) one easily obtains: 

( )
2

f IcIrwin

( )
 =



E k
K

b
 (33) 

 

Fig.5. LEFM failure stress estimates vs. ellipse eccentricity k for an infinitesimal iso-stress crack growth (LEFM, 

iso-stress), an infinitesimal minor axis crack growth (LEFM, minor-axis), KI,max = KIc (Irwin): at constant defect 

minor axis b (a) and at constant defect area A (b); k = 0 refers to a penny-shaped crack while k =1 refers to a 

through-the-thickness crack. 

In Fig.5 the dimensionless failure stress estimates Eqs. (18), (32), (33) are plotted vs. the ellipse eccentricity. 

Note that all predictions are close, since the contra-harmonic mean (of G  KI
2), as already observed, is close 

to its maximum value. In Fig.5a the estimates are compared at constant minor axis length. As k increases, so 

does the major axis and, obviously, the failure stress decreases. LEFM based on minor-axis crack growth 

provides predictions closer (or equal) to G-max criterion: however, we cannot state Eq.(32) coincides with G-

max criterion since infinitesimal crack extensions other than the elliptical ones could take place (see e.g. 

Fig.4c). It is apparent that, according to G-max criterion the effective failure stress lies in between Eqs. (32) 

(upper bound) and (33) (lower bound). Reasonably, it will be closer to minor-axis crack growth for small 

LEFM, iso-stress 

LEFM, minor-axis 

Irwin 

LEFM, iso-stress LEFM, minor-axis 

Irwin 

(b) 

(a) 
4  

3 8  

1   

2   
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eccentricity and closer to Irwin estimate for large eccentricity, where an elliptical crack growth is unlikely: 

e.g., for k = 1, we know the failure stress is f=KIc/(b), since the geometry becomes the 2b-long through-

the-thickness crack, while LEFM-minor (and LEFM-iso) provides f=KIc3/(8b), see Fig.5a. 

In Fig.5b the same estimates are plotted at constant defect area A =  a b. It is evident that the effect of the 

eccentricity is very low up to eccentricity values close to unity, i.e. what really affect the failure stress is the 

defect area and not its shape. This result agrees with the ones provided by David & Lazarus [43], related to 

(flat) defects of almost any shape. 

 

3. FFM approach 

The estimates provided in the previous section are based on a LEFM approach. As such, they share the well-

known drawback that can be applied only to cracked bodies, or, the same, they provide an infinite failure 

stress as the defect size vanishes. On the other hand, for quasi-brittle materials, we expect the failure stress 

to approach the material tensile strength c as the defect size vanishes. Thus, more refined models able to 

take into account the material tensile strength beyond the fracture toughness (or fracture energy) have to 

be used to deal with defects of any size. Herein, we resort to the CCFFM, whose predictions will match LEFM 

just for relatively large defect size, where energy alone rules crack growth and propagation. 

The CCFFM assumes crack growth by a finite increment A (whence the name FFM), see Fig.6a. This 

increment as well as the failure load is determined based on the finite energy balance and a stress condition 

(whence the name CC) – the stress must exceed the material tensile strength over the newly created crack 

surface A. While in 2D the finite crack extension is simply determined by its length and, possibly, by its 

direction, in 3D problems the crack extension can have any shape (the actual one will be the one minimizing 

the failure load), even in cases where the crack plane is already known, as in the present case. The application 

of FFM to 3D problems is thus a challenging task. Up to now, a common approach in the literature has been 

to consider a finite crack growth following the iso-stress lines [25; 27-29]. This assumption greatly simplifies 

the problem, allowing the crack growth to be described by just one parameter; moreover, it makes the 

fulfilment of the stress requirement trivially checked. However, a check of the approximation introduced by 

considering just (finite) iso-stress crack growths is not available; our goal is to provide it for the model 

problem at hand (the flat elliptical crack). 

Thus, let us derive the CCFFM failure stress for the planar elliptical crack (Fig.2). Here we don’t restrict the 

analysis to finite iso-stress crack growth, since the results in the previous section allow us to consider the 

crack growth of any (yet elliptical) shape. 

Hence, let us assume a finite crack growth where the new crack front has the shape of an ellipse (see Fig.6b) 

(whose symmetry axes coincide with the ones of the original flaw elliptical geometry). Its shape is univocally 

determined by two parameters, namely the increment of the minor axis b and the increment of the major 

axis a. As such, this approach includes as particular cases the iso-stress crack growth (Fig.4a) and the minor-

axis crack growth (Fig.4b). Since the iso-stress lines are also elliptical, the lowest stress level within the crack 

extension (darker area in Fig.6) is reached either at A’ or B’ (Fig.6b). Thus, in order the stress condition to be 

fulfilled, it is enough to check that z(A’)  c and z(B’)  c; meanwhile FFM requires also that the energy 

available for crack growth  is larger than the energy dissipated to create the new fracture surface A. That 

is: 

c

c

c

(A )

(B )

  


  
  

z

z

AG

 (34) 
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It is worth noting the analogy with the approach presented in [44], where the growth of an embedded 

elliptical crack under fatigue loading was analysed by analytically coupling and solving the Paris laws at points 

A and B, while assuming that the crack front maintains an elliptical shape throughout its propagation. 

Beyond the ratio b between the final value of the minor axis and its initial value - Eq.(31) - we now introduce 

also the ratio a between the final value of the major axis and its initial value:  

+ 
 =a

a a

a
 (35) 

 

 

Fig.6. An elliptical (planar) crack in an infinite medium under uniform tensile stress normal to the crack plane: 

solution by FFM (a); crack geometry and elliptical finite crack growth of any shape (b). 

 

The first inequality in Eq.(34) is achieved by means of Eq.(24) along with the following  value (coming from 

Eq.(25)): 

2 2 2( 1)+  = +    =  −aa a a a  (36) 

yielding (by Eq.(35) as well): 
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2 2
2 2 2 2
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1 1
( ) ( ) arcsin ,
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   −    
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a a a

k
E k E k E k f k  (37) 
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The second inequality in Eq.(34) is achieved by means of Eq.(24) along with the following  value (coming 

again from Eq.(25)): 

2 2 2( 1)+  = +    =  −bb b b b  (38) 

yielding (by Eq.(31) as well): 

( ) ( )
( )

1

2
2 2 2 2

2 2 2 2 2 2 2
c

1
( ) ( ) arcsin ,

1 1 1

−

  
    + − = 

     − −  + −  +   

b
Sb b

b b b

E k E k E k f k
k k k k

 (39) 

 

 
Fig.7. Graphical representation of the minimum search - Eq.(44) - for ellipse eccentricity k (flaw shape) equal 

to 0.8. The dots correspond to the position of the minimum. Small flaw size ( = 0.8), corresponding to iso-

stress crack growth scenario (a); large flaw size ( = 10), corresponding to minor-axis crack growth scenario 

(b); limit (  1.45) case (c). 
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The third inequality in Eq.(34) follows from Eq.(23) and the area of the crack increment A: 

( ) ( )
22 2

2 2

4

3
1 1

 
 

+  +    
 = − 

    +     
− −       +           

a a b b a b

E b b b
E E

a a a

 (40) 

( ) ( ) =  +  +  −  A a a b b a b  (41) 

Let us introduce the dimensionless flaw size  as: 

( )
2

chIc c

b b

lK
 = =


 (42) 

where lch is (Irwin’s) material characteristic length. Eq.(42) highlights that the crack size is a relative concept: 

what really matters is the ratio of the size to the characteristic length. Note also that  is the square of the 

inverse of the so-called brittleness number introduced by Carpinteri [45], s = KIc / (c b). By Eq.(40) and (41), 

the third inequality in Eq.(34) in dimensionless form finally reads: 

( )2

2

c

22 2

2

13 1
, ,

12

( )(1 )
1

  −
 =  

   
−

 − 
− 

 

a b
E a b

a b

b

a

f k

E kk
E

 (43) 

Hence, according to FFM, for a given defect shape (k) and size (), the relative failure stress f/c is univocally 

determined. More precisely, f is the minimum value, for any crack increment a > 1 and b > 1, satisfying the 

three inequalities in Eq.(34). That is: 

( ) ( ) ( )2 2 2

f c
1
1

1
min max , , , , , ,
a

b

Sa a Sb b E a bf k f k f k
 
 

  
 =       

  
 (44) 

Let us fix k, e.g. k = 0.8. Depending on , we may have just two scenarios, as evident in Fig.7. For small  

(Fig.7a), i.e. for relatively small flaw size, the minimum load is achieved for iso-stress crack growth (Fig.4a). 

The finite crack growth is significant (i.e. a and b significantly larger than unity) and the relationship between 

the increment of the two semi-axes is given by Eq.(26) that, in terms of a and b, can be more conveniently 

expressed as (see Appendix C for details): 

2 2 2(1 )a bk k = + −   (45) 

Note that in this case the three inequalities in Eq.(34) are strictly fulfilled. This former scenario is the iso-

stress one. 

The second scenario (Fig.7b) is linked to large , i.e. for relatively large flaw size: the minimum load is 

achieved for minor-axis crack growth (Fig.4b). The finite crack growth is relatively small (i.e. b slightly higher 

than unity) and, of course, a = 1 since there is no increment of the major axis of the flaw. Note that in this 

latter case the second and third inequalities in Eq.(34) are strictly fulfilled while the first one is over fulfilled. 

This latter scenario is the minor-axis one. The discriminant between the two scenarios is when the failure 

stress is the same (see Fig.7c), i.e.: 
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( ) ( )2 2 21, (1 ) ,E a b E a b bf f k k =  =  = + −    (46) 

This is an equation in the unknown b. Let us name 
b  its solution. The corresponding dimensionless 

threshold size th is obtained by equating the stress condition (either the first or the second one in Eq.(34)) 

with the energy one (third condition in Eq.(34)). That is: 

( )

( )

2

th

1,E a b

Sb b

f

f

  = 
 =  

  
 (47) 

For k = 0.8, we found th  1.45. Then, if  < th, iso-stress scenario takes place. Accordingly, the finite crack 

growth (through b) is given by the solution of the following equation: 

 
Fig.8. Flowchart to determine the failure stress f for a given flaw shape (k) and size (). 

 

( ) ( )2 2 2(1 ) ,Sb b E a b bf f k k  =  = + −    (48) 

On the other hand, if  > th, minor-axis scenario takes place. Accordingly, the finite crack growth (through 

b) is provided by solving: 

( ) ( )1,Sb b E a bf f  =  =   (49) 

Let us denote by bc the solution of either Eq.(48) or (49). In both cases the failure stress is given by either 

the stress or energy condition. Taking the first we have: 

( )f c cSb bf =    (50) 

For clarity, the flow chart providing the finite crack growth and the failure stress is given in Fig.8. 
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Fig.9. Failure stress vs. dimensionless flaw size  = b/lch for different flaw shape (i.e. ellipse eccentricity k or 

aspect ratio  = b/a) according to LEFM (minor axis crack growth) and to FFM:  = 0.8, k = 0.6 (a);  = 0.5, k  

0.85 (b);  = 0.2, k  0.98 (c). Threshold value of  dividing iso-stress (left) and minor axis (right) finite crack 

growth are also highlighted. 

 

In Fig.9 the failure stress vs. flaw size plots for different ellipse eccentricity values are drawn. The threshold 

size according to which there is the switch between scenarios is also highlighted. While the iso-stress scenario 

prevails for small eccentricity (being the only one for a penny-shaped crack), the minor-axis scenario becomes 

predominant for large eccentricity. Note also that FFM reverts to LEFM (in its minor-axis crack growth 

version) as the flaw size increases; on the other hand, for small flaw size, LEFM provides unrealistically high 

failure stresses, while FFM predictions remain always lower than the material tensile strength. 
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In Fig.10a the different curves in Fig.9 are compared altogether, including the ones referring to a through-

the-thickness crack of semi-length b (k = 1) and to a penny-shaped crack of radius b (k = 0). Note that these 

two latter cases are 2D geometries (the first one is actually a 2D problem; the second one is a pseudo 3D 

problem, due to the radial symmetry); as such, their solution is simpler and already available in the literature 

[16, 17]. Of course, the comparison being made at constant b, the failure stress decreases as the eccentricity 

increases. In Fig.10b the same comparison is provided at constant flaw area (the through-the-thickness crack 

case is somewhat meaningless, since A constant and a infinite yield b null). Again, as in the LEFM analysis, it 

is apparent that, for relatively small eccentricity, the parameter governing the failure stress is the flaw area. 

In other words, for flaw aspect ratio b/a between 0.5 and 1, the failure stress due to the presence of an 

elliptical crack is (almost) equal to the one due to a penny-shaped crack of the same area. 

 

 
Fig.10. FFM estimates of the failure stress for different flaw shape (k  0, 0.6, 0.85, 0.98, 1; i.e.  = 1, 0.8, 0.5, 

0.2, 0) vs. dimensionless flaw size  = b/lch (a) and vs. dimensionless flaw area (A/lch
2) (b). 

 

Note that, whatever is the scenario, the elliptical crack grows always toward an elliptical shape closer to that 

of a circle (with respect to the original elliptical shape), i.e. the eccentricity diminishes. This is a common 

finding in the literature, even for original flaws of shape other than the elliptical one [35, 38, 43, 44]. 

Regarding the difference between iso-stress and non-iso-stress finite crack growth, for small sizes fracture 

propagates actually by iso-stress lines. For larger size (i.e.  > th) the iso-stress failure stress prediction 

becomes larger than the minor axis one. Let us consider for instance the case considered in Fig.7b, where k 

(a) 

(b) 

k 

=0 

=0.8, 1 
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=0.5 

=0.2 
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= 0.8 and  = 10: although it is clear that the minimum load is achieved for minor-axis growth (a = 1), it is 

also apparent that the failure stress corresponding to iso-stress crack growth is just slightly larger. Actually 

the difference between the two predictions increases with size, i.e. . For →, FFM reverts to LEFM and 

the difference between minor-axis and iso-stress predictions can be directly determined from Fig.5a. For 

instance, for k = 0.8, the relative difference (i.e. the error made using the iso-stress assumption) is about 3%, 

which is almost negligible from an engineering point of view. Fig.5a shows also that the largest error takes 

place when → and k = 1, i.e. a large through-the-thickness crack: in this extreme case the difference is 

[(3/8)−(1/))/(1/)]  8,5%. Thus, we can conclude that, for the geometry at hand and for ellipse aspect 

ratios not really close to zero (i.e. except for the case b << a), the error made by using the iso-stress crack 

growth assumption is reasonably small. Of course, this does not mean that this is always the case, but the 

present case corroborates the conjecture made by Leguillon [25], i.e. iso-stress crack growth can be a 

reasonable and effective simplifying assumption. 

Finally, note that extending our analysis to a more complex stress state, such as the one occurring to the 

present geometry when the remote tensile stress is not normal to the crack plane, would broaden the 

applicability of the paper. However, given the mode mixity (I, II, III) and the expected non-planar (unknown) 

crack growth, this is a major, challenging task going beyond the scope of the current manuscript. In this sense, 

it would be reasonable to start with an inclined penny shaped crack, which is a configuration investigated in 

the past with simpler fracture criteria, see e.g. [46]; see also [47] for recent interesting experimental data. 

 

4. Conclusions 

The failure remote stress causing (unstable) crack propagation in an infinite linear elastic 3D domain 

containing a flat elliptical crack has been obtained in an analytical form by means of the CCFFM, under the 

assumption that the finite crack growth can be of any elliptical shape. It is found that the finite crack growth 

always leads to elliptical crack geometries with lower eccentricity, i.e. the crack shape tends to that of a 

penny-shaped crack. Differently from other investigations available in the literature, in this 3D application of 

FFM we removed the assumption of iso-stress crack growth. Particularly for large flaws we found failure 

stress values lower than the ones obtained by the iso-stress assumption, which, thus, must be seen as 

potentially dangerous since providing non-conservative predictions. Nevertheless, the difference appears to 

be of few percents and, thus, the iso-stress assumption when applying CCFFM is regarded as more than 

reasonable in engineering practice. It is noteworthy that for small elliptical defects, the failure remote stress 

predicted by the present FFM procedure can be significantly smaller than that obtained by LEFM assuming 

infinitesimal crack growth. Notably, the failure remote stress predicted by LEFM depends on the assumed 

shape of the infinitesimal crack increment. 
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Appendix A 

The Contra-harmonic mean (C) was introduced by Eudoxus from Cnidus (408–355 B.C.) as the ratio between 

the sum of the squares of the values and the sum of the values themselves. The name is due to the fact that, 

if we consider two values a and b, the distance between the Arithmetic mean (A) and the Harmonic mean 

(H) is equal to the one between the Contra-harmonic mean (C) and the Arithmetic mean (A): 

+
=( , )

2

a b
A a b  (A1) 

=
+

2
( , )

1 1
H a b

a b
 (A2) 

+
=

+

2 2

( , )
a b

C a b
a b

 (A3) 

− = −( , ) ( , ) ( , ) ( , )C a b A a b A a b H a b  (A4) 

For instance, if a = 9 and b = 1, A = 5, H = 1.8, C = 8.2 (C−A = 3.2 = A−H). 
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Appendix B 

The complete elliptic integral of the first kind reads: 

( )
2

2
0

1
d

1 sin



= 
− 

K m
m

 (B1) 

The complete elliptic integral of the second kind reads: 

( )
2

2

0

1 sin d



= −  E m m  (B2) 

The derivative of the elliptic integral of the second kind with respect to m is: 

d ( ) ( ) ( )

d 2

−
=

E m E m K m

m m
 (B3) 

The incomplete elliptic integral of the second kind is: 

( ) 2

0

1 sin dE m m



 = −    (B4) 

The relationship between the incomplete elliptic integral and its complete counterpart is: 

( )
2

E m E m
 

= 
 

 (B5) 
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Appendix C 

Here we derive the relationship between the semi-axes increments in case of iso-stress crack growth, in 

dimensional – Eq.(26) – and dimensionless – Eq.(45) – form. 

From Eq.(36) we have: 

2a a a = +  −  (C1) 

while, from Eq.(38): 

( )
2 2b b b =  + −  (C2) 

Replacing (C2) into (C1), we get Eq.(26).  

From Eq.(36) we have also: 

2

2
1a

a


 = +  (C3) 

while, from Eq.(38): 

( )2 2 1bb =  −  (C4) 

Replacing (C4) into (C3) and recalling that, by eccentricity definition, ( )
2 21b a k= − , we get Eq.(45). 
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